Hypergeometric (super)congruences

نویسنده

  • WADIM ZUDILIN
چکیده

The sequence of (terminating balanced) hypergeometric sums an = n ∑ k=0 ( n k )2( n+ k k )2 , n = 0, 1, . . . , appears in Apéry’s proof of the irrationality of ζ(3). Another example of hypergeometric use in irrationality problems is Ramanujan-type identities for 1/π, like ∞ ∑ k=0 ( 2k k )3 (4k + 1) (−1) 26k = 2 π . These two, seemingly unrelated but both beautiful enough, hypergeometric series have many issues in common, as I explain in my review “Ramanujan-type formulae for 1/π. A second wind?”. In my talk, I plan to discuss further number-theoretical aspects of the two examples, namely, the congruences anp ≡ an (mod p) for n = 0, 1, . . . , p > 3 prime (I. Gessel, 1982), and p−1 ∑ k=0 ( 2k k )3 (4k + 1) (−1) 26k ≡ (−1)(p−1)/2p (mod p) for p > 2 prime (E. Mortenson, 2008); these are called supercongruences because they happen to hold not just modulo a prime p but a higher power of p. In spite of the elementary character of these supercongruences, the existing proofs are not general enough to treat other similar cases. My goal is to attract attention to this nice and elementary subject on the border of arithmetic and hypergeometrics. 1. Hypergeometric series The (generalized) hypergeometric function is defined by the series mFm−1 ( a1, a2, . . . , am b2, . . . , bm ∣∣∣∣ z) = ∞ ∑ n=0 (a1)n(a2)n · · · (am)n (b2)n · · · (bm)n z n! , (1) which has the unit disc |z| < 1 as natural domain of convergence, where (a)n = Γ(a+ n) Γ(a) = { a(a+ 1) · · · (a+ n− 1) if n ≥ 1, 1 if n = 0, Date: July 20–25, 2009. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binomial Coefficient–harmonic Sum Identities Associated to Supercongruences

We establish two binomial coefficient–generalized harmonic sum identities using the partial fraction decomposition method. These identities are a key ingredient in the proofs of numerous supercongruences. In particular, in other works of the author, they are used to establish modulo p (k > 1) congruences between truncated generalized hypergeometric series, and a function which extends Greene’s ...

متن کامل

A 45 Integers 12 ( 2012 ) Supercongruences for a Truncated Hypergeometric Series

The purpose of this note is to obtain some congruences modulo a power of a prime p involving the truncated hypergeometric series p−1 � k=1 (x)k(1− x)k (1)k · 1 ka for a = 1 and a = 2. In the last section, the special case x = 1/2 is considered.

متن کامل

A Gaussian Hypergeometric Series Evaluation and Apéry Number Congruences

If p is prime, then let φp denote the Legendre symbol modulo p and let p be the trivial character modulo p. As usual, let n+1Fn(x)p := n+1Fn „ φp, φp, . . . , φp p, . . . , p | x « p be the Gaussian hypergeometric series over Fp. For n > 2 the non-trivial values of n+1Fn(x)p have been difficult to obtain. Here we take the first step by obtaining a simple formula for 4F3(1)p. As a corollary we o...

متن کامل

Gaussian Hypergeometric Functions and Traces of Hecke Operators

We establish a simple inductive formula for the trace Tr k (Γ0(8), p) of the p-th Hecke operator on the space S k (Γ0(8)) of newforms of level 8 and weight k in terms of the values of 3F2-hypergeometric functions over the finite field Fp. Using this formula when k = 6, we prove a conjecture of Koike relating Tr 6 (Γ0(8), p) to the values 6F5(1)p and 4F3(1)p. Furthermore, we find new congruences...

متن کامل

Supercongruence Conjectures of Rodriguez-villegas

Abstract. In examining the relationship between the number of points over Fp on certain Calabi-Yau manifolds and hypergeometric series which correspond to a particular period of the manifold, Rodriguez-Villegas identified 22 possible supercongruences. We provide a framework of congruences covering all 22 cases. Using this framework we prove one of the outstanding supercongruence conjectures bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009